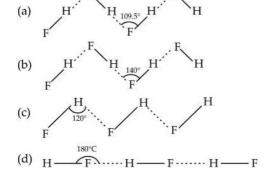


CHEMISTRY CRASH COURSE


LECTURE - 03

TOPICS: Periodicity and Chemical Bonding

- The increasing order of the first ionisation enthalpies of the elements B, P, S and F (lowest first) is

 - (a) F < S < P < B (b) P < S < B < F

 - (c) B < P < S < F (d) B < S < P < F
- Which of the following processes involves absorption of energy?
 - (a) $S_{(g)} + e^{-} \rightarrow S_{(g)}^{-}$
 - (b) $O^{-}_{(g)} + e^{-} \rightarrow O^{-}_{(g)}$
 - (c) $Cl_{(g)} + e^{-} \rightarrow Cl_{(g)}^{-}$
 - (d) $O_{(0)} + e^{-} \rightarrow O^{-}_{(0)}$
- Which of the following does not show amphoteric behaviour?
 - (a) Zn(OH),
- (b) BeO
- (c) Al_2O_3
- (d) SO₂
- 4. The effective nuclear charge of Mg (Z = 12) is
 - (a) 3
- (b) 2
- (c) 4
- (d) 1
- Which of the following is correct representatin of hydrogen bonds in H - F?

- 6. A molecule (X) has (i) four sigma bonds formed by the overlapping of sp² and s-orbital. (ii) one sigma bond formed by sp² and sp² orbitals and (iii) one π bond is formed by p_x and p_y orbitals. Which of the following is X?
 - (a) C_2H_6
- (b) C_2H_3Cl
- (c) C_2H_2Cl
- (d) C_2H_4
- 7. The electronegativity of H and Cl are 2.1 and 3.0 respectively. The correct statement about the nature of HCl is
 - (a) 17% ionic
- (b) 83% ionic
- (c) 50% ionic
- (d) 100% ionic
- Which of the following species is diamagnetic in 8. nature?
 - (a) He_2^+
- (b) H₂
- (c) H_{2}^{+}
- (d) H_{2}^{-}
- XeF, is isostructural with
 - (a) SbCl₃
- (b) BaCl₂
- (c) TeF,
- (d) ICl_2
- 10. N_2 and N_2 are converted into monoanions N_2^- and O₂ respectively. Which of the following statements is wrong?
 - (a) In N_2^+ , N-N bond weakens
 - (b) $O_2^+, O O$ bond order increases
 - (c) In O_2^+ , paramagnetism decreases
 - (d) N₂ becomes diamagnetic

CHEMISTRY CRASH COURSE

LECTURE - 3

TOPICS: Periodicity and Chemical Bonding (SOLUTION)

- (d): In general as we move from left to right in a period, 1. the ionisation enthalpy increases with increasing atomic number. The ionisation enthalpy decreases as we move down a group. $P(1s^22s^22p^63s^23p^3)$ has a stable half filled electronic configuration hence, its ionisation enthalpy is higher than that of S.
 - :. Increasing order of ionization energy is B < S < P < F.
- **(b)**: Processes (a), (c) and (d) represent EA_1 of the 2. atoms which is their natural tendency and hence energy is evolved. But (b) process is EA_2 of O atom and involves absorption of energy.
- (d): Zn(OH)2, BeO and Al2O3 are all amphoteric in 3. character.

4. (a): Mg (Z = 12)
E.C.
$$1s^2$$
 $2s^2 2p^6$ $3s^2$
 $(n-2)$ $(n-1)$ n
 σ of $2e^-$ in $(n-2)^{th}$ $8e^-$ in $(n-1)^{th}$ $1e^-$ in n^{th} orbit
 2.0 + 6.8 + $0.35 = 9.15$
 $Z^* = 12 - 9.15 = 2.85 \approx 3$

5. (b): The bond angle in hydrogen bonding of HF is 140°.

6. (d):
$$H \subset C \subset H$$
 $\sigma(sp^2 - sp^2) = 1$; $\sigma(sp^2 - s) = 4$, $\pi = 1$

(a): % ionic character = $16(\chi_A - \chi_B) + 3.5(\chi_A - \chi_B)^2$ 7. (Here χ_A and χ_B are the electronegativities of bonded atoms of chlorine and hydrogen) $= 16(3.0 - 2.1) + 3.5(3.0 - 2.1)^{2}$ $= 14.4 + 2.835 = 17.235 \approx 17\%$

CHEMISTRY

 H_2 : $(\sigma 1s)^2$ - no unpaired electron - diamagnetic H_2^+ : $(\sigma 1s)^1$ - one unpaired electron-paramagnetic H_2^- : $(\sigma 1s)^2$ $(\sigma^*1s)^1$ - one unpaired electron

- paramagnetic

(d): $F = \ddot{X}e = F$ sp^3d , Linear 9.

 sp^3 , Pyramidal

sp3, V-shaped

(d):When N_2 is converted to N_2^+ , it becomes 10. paramagnetic due to the presence of 1 unpaired electron so the wrong statement is (d).